
Implementation of Integrity Constraint Checker for Healthcare

Database System

Kyawt Kyawt San

University of Computer Studies, Kyaing Tong

kyawtkyawts@gmail.com

Abstract

Checking integrity constraints and enforcement is

by now firmly established as a key functionality of a

DBMS.DBMS must therefore help present the entry

of incorrect information by enforcing integrity

constraints. This paper presents integrity constraint

checker for hospital database. The checker will also

guard against accidental damage to the database, by

ensuring that authorized changes to the database do

not result in a loss of data consistency by using an

efficient algorithm, Constraint Planning Algorithm

(CPA). Constraints to be enforced are also stored in

the meta database. CPA takes as input an update

statement and checks violation with the constraints

stored in the meta database. In case of violation, the

update statement is rejected and the violated

constraint is output to the user. This algorithm is

efficient since the algorithm does not require the

update statement to be executed before the constraint

check is carried out.

1. Introduction

With the constant rise of computers abilities and

trustworthiness of computers in general, the

utilization of systems for data storage has risen as

well. Moreover, the success of an organization

depends on its ability to acquire of an organization

depends on its ability to acquire accurate and timely

data about its operations, manage this data

effectively and to use it to analyze and guide its

activities. As these reasons, integrity theory plays an

important role in the relational model, which has

obtained a great success in both theory and system.

Using a relational database, it can specify what

kind of data a database column is allowed to contain

and it can also set data fields, numeric fields, text

fields, etc. this gives us control over data integrity.

Data integrity can increase the reliability of the data

by setting field properties, linking tables and by

applying data integrity rules. The consistency of the

database is preserved by imposing integrity

constraints on such interrelated data.

Integrity checking and maintenance are central

issues, as without any guarantee of data consistency,

the answers to queries become unreliable. When

database system operates, there is a very large

likelihood of constraints to be violated. An update

statement issued on a database might cause a

constraint to be violated essentially endangering the

consistency of the database. Frequent changes in data

causes frequent constraint violations causing the

system to rollback frequently. Such systems are

inherently inefficient as they consume lot of

resources for rolling back the database state. Hence,

a complete, standalone system that enables efficient

and speedy checking of constraint violations is

needed [2].

One of the major modules in this system is

integrity constraint checker which is responsible for

interfacing with the meta database. This system will

check hospital administrative functions such as

admit, discharge, and treatment and so on. Data all

about the patients is stored in tables such as

Registration. Admit, Case, Treatment, and so on. To

fulfill these tasks, whenever an event of update

statement to these tables in the database, consistency

checking is first carried. Only it is a non-constraint

violator the update statement is carried out.

Otherwise, the update statement is rejected. This

paper presents integrity constraint checker

architecture by using Constraint Planning Algorithm

(CPA).

The rest of the paper is organized as follows :

Section 2 presents importance of data accuracy and

validity in relational database, classifications of

integrity constraints applied in this system, defining

critical roles of consistency checking in relational

database and . The constraint checker internal

architecture is explained in Section 3. Constraint

Planning Algorithm is also discussed in this section.

In Section 4, implementation results with processing

steps applying CPA are presented. Conclusions can

be found in Section 5.

2. Importance of Data Accuracy and

Validity in Relational Database

The need for storage of collection of records or

data gave rise to special branch of computer systems

commonly called database management systems.

Today computer systems are used for storage of

important data in various areas of human activities.

Properties like safety, dependability and integrity of

such a systems are necessary in order to establish a

reasonable degree of confidence in them. These

systems are now very reliable and are therefore used

also in areas like medicine, financial transactions,

trade, etc., where the data are extremely important

and their damage would cause major difficulties and

severe damages. Moreover, the success of an

organization depends on its ability to acquire

accurate and timely data about its operations, manage

this data effectively and to use it to analyze and

guide its activities.

As these reasons, the accuracy of the data

managed by database systems is vital to any

application utilizing data for various purposes.

Hence, Consistency checking is an important

problem in the area of database system.

2.1 Integrity Constraints

Integrity constraints have been studied from

various aspects since the introduction of the

relational data model. Integrity of data ensures that

the value of the data is meaningful and valid.

Integrity of data is achieved by placing restrictions

on data values and keeping the relational link valid at

all times. These restrictions and linking are expressed

as integrity constraints. To maintain the integrity of

the data within the database, the followings need to

be considered:

Entity integrity is normally enforced through the use

of a primary key or unique index to ensure that every

row in a table is unique.

Domain integrity ensures that the data entered into a

table is not only correct, but also appropriate for the

columns into which it is entered. The validity of a

domain may be as broad as specifying only a data

type (text, numeric, etc.) or as narrow as specifying

just a few available values.

Referential Integrity ensures that a value that

appears in one relation for a given set of attributes

also appears for a certain set of attributes in another

relation. Referential integrity constraints ensure that

all foreign keys are maintained. A foreign key is a

value in one table that references, or points to, a

related row in another table.

DELETE statement’s option for Foreign Key

Constraints:

• CASCADE – when rows with parent key

values are deleted, causing all rows in child

tables with dependent foreign key values to

also be deleted.

• NO ACTION – If any row in the child table

does not have a corresponding parent key,

the deletion is rejected when the NO

ACTION is used in the DELETE statement.

NO ACTION means that a non null delete

value of a foreign key must match some

• value of the parent key of the parent table

when the DELETE statement is completed.

• RESTRICT – If any row in the child table

matches the original value of the key, the

deletion is rejected when the RESTRICT

option is applied.

UPDATE statement’s option for Foreign Key

Constraints:

• CASCADE – when rows with parent key

values are updated, causing all rows in child

tables with dependent foreign key values to

also be updated.

• NO ACTION – If any row in the child table

does not have a corresponding parent key,

the update is rejected when the NO

ACTION is used in the UPDATE statement.

NO ACTION means that a non null delete

value of a foreign key must match some

value of the parent key of the parent table

when the UPDATE statement is completed.

• RESTRICT – If any row in the child table

matches the original value of the key, the

update is rejected when the RESTRICT

option is applied.

State Transition Constraints: deal with two

consecutive database states.

State sequence (temporal constraints): These

constraints refer to more than two database states

(not necessarily consecutive database states).

2.2 Relational Database and Consistency

Checking

Databases play a pivotal role in almost every

organization in today's information-based society. A

Relational Database is typically made up of many

linked tables of rows and columns that is created and

managed by a relational database management

system (RDBMS). In addition to specifying the

attributes (column names and associated data types)

of each table, it may specify integrity constraints that

the data must satisfy. Integrity rules are part of the

database and are enforced by the RDBMS. The major

feature of a relational model is that each record in the

relational database contains information related to a

single subject and only that subject.

Database applications play a critical role in

almost every modern organization. In RDBMS, the

system manages all data in tables. Information is

joined on related values from multiple tables or

queries. The database must also be assured that all

update statements can execute successfully and that

the resulting database state satisfies the integrity

constraints before permanently saving in the new

database state. In order to protect the database from

corruption due to a variety of causes, apply

constraints, or rules, to the structure of the database

and its contents. Integrity checking may be

performed at the time of on input, on deletion and on

update.

This paper presents integrity check on update

operations before saving in the database. Update

operations can be insert or delete or a modify

statements. In order to provide integrity checking,
constraints are implemented by a mechanism that

detects violations and then discards the modifications

that caused the violations. Therefore, this system also

ensures that the database avoids unnecessary rollback

operations. In each occurrence of an update

operation, integrity guard must be carried out.

Overview of integrity guard is shown in figure 1.

Figure1. Overview of Integrity Guard

2.3 Important Roles of Integrity Constraints

in Relational Database

Integrity control is a key feature of systems that

provide access to large and shared data resources.

Especially when such resources are updatable,

integrity constraints have, as their prime use, the role

of defining the system’s criteria for update validity.

The purpose of integrity constraints in database is to

prevent semantic inconsistencies in data. Moreover,

they are predicates on the database and they must

always be true and checked whenever database gets

updated. Although database system cannot protect

against all accidental errors such as a date being

entered incorrectly and mistyping a name, database

system should protect against unreasonable entries,

updates, deletions etc.

Attempts to alter a database in ways which violate

integrity must be prevented. Responses to these

events include reject the attempted operation or

request or prompt for alternative values or abort the

current transaction. To make integrity control

techniques usable for database practice, attention

should be paid both to issues of functionality and

semantics, and to issues of feasibility and

performance.

3. Constraint Checker Overview

In this section, overview of the system, constraint

checking procedure and constraint checker

architecture is presented. Using the database

description of database objects, meta database is

constructed. Constraints to be enforced are also

stored in the meta database. Information of all tables

and constraints are also stored in the meta database.

A module, constraint checker that accepts

insert/update/delete request from user and considers

constraint from meta database and decides if any

constraint is violated. If one of the constraints is

violated, the update statement is rejected. In order to

perform these tasks, an efficient algorithm, constraint

planning algorithm (CPA) is presented for checking

any violations caused by the update statement input

by the user. CPA forms the algorithmic backbone for

the constraint checker.

3.1 Example Database

As it increases in the number of patients,

inevitable mistakes happen more and more often in

hospital. The most effective way of reducing or

eliminating these is to use computer based database

system efficiently managing the administrative

operations of patients in the hospital. In this paper,

healthcare database system maintains seven tables:

Doctor, Registration, Admit, Case, Treatment, Visit

and OPD. The healthcare database enables to add

new patient record, to edit or delete the existing

records in all seven tables without violating the

database. In each occurrence of an update operation

on a table, integrity check is performed before saving

in the database. Only it is a non-constraint violator,

the update statement is carried out. Here is a typical

healthcare database system.

Doctor: Doctor relation with attribute names (DrID,

DrName, Dob, Admitted Date, Degree, NRC No,…)

are maintained.

Registration: A patient is whether admitted or not, he

or she must register once. Patient relation with

attribute names (RegNo, Name, RegDate, NRC No,

…) are also recorded.

Admit: Only admitted patients are stored in this table

with their attributes such as AdmitNo, Admitted

Date, Discharge Date, DrName, Disease,etc., are

recorded.

 Case: A patient can have one or more cases during

their admission periods uniquely identified by their

CaseIDs. Case relation with attribute names (

CaseId, AdmitNo, RegNo, Disease,DrName,..) are

recorded.

Treatment: There must be no patients without a

treatment. A patient must have at least one treatment.

Treatment relation with attribute names (

TreatmentNo, AdmitNo, RegNo,TreatmentDate,

Disease,..) are also recorded.

OPD: Only outside patients are stored in this table.

Patient relation with attribute names (RegNo, Name,

Date, NRC No, …) are also recorded.

3.2 Constraint Checker Internal Architecture

The internal architecture of the constraint checker

and the overall procedure of constraint checking are

explained using Figure 2. The integrity constraint

Integrity
Guard

Update

Operation

Status

Update

Operation

Data

checker has three major modules: meta database

extractor, constraint checker, and constraint executor.

Meta database extractor: extracts all the constraints

being affected by the update statement.

Constraint checker: makes a decision whether

constraint violation occurs or not upon the

constraints input by the meta database extractor for

efficient constraint checking.

Constraint executor: is responsible to output

violated constraints to the user and if not violated

saving in the database by interacting with the data

source.

Figure2. Overview of Integrity Constraint

Checker

Figure 2 shows the overall procedure of constraint

checking in following six steps. An update statement

is issued on a table. The meta database extractor

computes the list of constraints being affected by the

update statement and also returns this list to the

constraint checker. The constraint checker takes as

input that constraint list and makes a decision if a

constraint is violated. The value of each constraint is

either 0 or 1 and if the value of constraint is 1, the

constraint is violated and rejected update statement.

Step 1

When the user issues an update statement U to the

database, the database management system identifies

database objects being modified. The output from

this step is the database object list (DOL).

Step 2(Meta Database Extractor)

The meta database extractor takes as input

database object list. It contacts the meta database and

gets the list of constraints being affected by the

update statement.

 Step 3

The meta database extractor sends affected

constraints extracted from the meta database to the

constraint checker.

Step 4 (Constraint Checker)

The constraint checker takes as input the affected

constraints and constructs the violated constraint list

and a decision is made.

CL(C i) = <C i > where

C i is the constraint identifier

Table 1. Constraint List

C i Description

C25 Constraint C25 states that Discharge Date

must be greater than Admit Date

Step 5 (Constraint Executor)

 The constraint executor outputs error message to

the user if violated. Otherwise, the update statement

is saved by interacting with the data source.

Step 6

The results are output to the user.

3.3 Constraint Planning Algorithm (CPA)

Algorithm CPA (Constraint Planning Algorithm)

shown in Figure 3 gives efficient constraint

checking. Algorithm CPA takes as input the update

statement U and outputs the list of constraints (C i j)

for each C i being affected by U. An update U can be

and update involving an insert or a delete or a modify

statement. The update statement is carried out only if

it is a non-constraint violator. The approach of the

constraint planning algorithm (CPA) is to scan

through the constraint Ci, update statement U and

then generate the affected constraints. The value of

each C i j is either 0 or 1 and if the value is 1, the

constraint is violated, otherwise not.

Figure 3. CPA Algorithm

1 2

 3

 4

 6 Output

 5

Insert/Update/Delete

Meta Database Extractor

Constraint Checker

Constraint Executor

 Meta Database

 Data Source

1: INPUT: (a) U: update R m :(t1,…, t n)

2: OUTPUT: list of constraints < C1, …, Ci>

for each Ci affected by U

3: DOL (U) =< R (a1 = t1, …, an = tn) >

4: CL(DOL (U) =< C1,…, Cq >

5: Let Ø = {x1 t1, …, x n ,<- t n } be obtained from

DOL(U) where x1,…, x n are variables corresponding to the

columns of table R
6: for each i in {1…q} do

7: for each j in {1…n i} do

8: let Rj: p1(x 1), p2(x 2),…, pr (x r) be the goals of C i

associated with R j

9: C i j = count (select * from p1,…, pr where <cond1>)

10: <cond1> is obtained from x1… x r using standard

method of joining tables.

11: C i j = return 1 if (< cond2>) else return 0.

12: <cond2> is obtained from Ø and x1… x r

13: end for

14: end for

15: apply the substitution Ø (U) to all C i j.

Database Object List (DOL) identifies the

database objects being modified by the update

statement, U. DOL(line3) identifies the table R with

attributes (column names) a1… an inserted with

values t1…t n. CL (line4) gives the list of constraints

being affected by the update statement. The outer for

loop variable i (line6) loop through all the

constraintsC1…C q affected by the update U. The

inner for loop variable j (line 7) loops through each

table (< R11,…,R1n>,…<Rq1,…R q n>) for each

constraint i. Inside the for loop (line6-15), all the

constraints C i j’s are generated.

4. System Implementation

The main goal of this system is to facilitate the

checking of updates for violation of database

integrity constraints and to ensure integrity and

consistency of data in a database.

In this section, a prototype of the system

implementation is shown in figure 3 and figure 4.

The figure 3 shows that user enters invalid

discharged date in Admit table and tries to save in

the database. As a result, the violated update

statement is rejected and output error message to the

user as shown in figure 4.

Whenever user tries to enter the inconsistent data

into the healthcare database, integrity checking is

first carried out with the pre defined constraints

stored in the meta database. By performing integrity

checks before saving in the database, expensive

rollback operations are avoided. Pushing most of the

processing before saving in database, efficiency is

gained.

4.1 Processing Steps of the System

Implementation Using CPA

The processing steps of the system

implementation are traced line by line using CPA

algorithm as follows:

Input:

User updates admitted patient record via Admit entry

form.

U =Admit (‘‘, R0006, ‘Ma Zar Zar Oo’,

‘17/Jul/2008’, ‘13/June/2008’, ‘Daw Hnin Thuzar’,

‘Stomach Ache’)

Output:

 List of Constraints (C1… Ci) for each Ci affected by

update statement U.

 /* DOL from CPA line (3) */

DOL (U) = Admit {Admit No=’’, Reg No=R0006,

Name=’ Ma Zar Zar Oo’, Admit Date=

‘17/Jul/2008’, Discharge Date= ‘13/June/2008’, Dr

Name= ‘Daw Hnin Thuzar’, Disease= ‘Stomach

Ache’}

/* Constraint List from CPA line (4) */

CL (DOL (U)) = <C25 …> where C25 states that

Discharge Date must be greater than Admit Date.

One of the affected constraints, only C25 is traced

for illustrative purposes.

/* CPA line 5*/

Ø= Admit (Admit No=’’, Reg No=R0006, Name=’

Ma Zar Zar Oo’, Admit Date= ‘17/Jul/2008’,

Discharge Date= ‘13/June/2008’, Dr Name= ‘Daw

Hnin Thuzar’, Disease= ‘Stomach Ache’)

The constraint checker loops through affected

constraints output by the meta database extractor and

corresponding tables. (CPA lines 6-7).

/* Constraint C25 is generated from Algorithm CPA

lines (9-12) */

C25= count (select * from Admit where

Admit.Admit Date> Admit.Discharge Date)

Apply the substitution Ø (U) to the affected constraint

C25.

Ø (C25) = return 1 if (17/July/2008>13/June/2008)

else return 0

The value of each C i j is either 0 or 1 and if the

value of constraint is 1, the constraint violation

occurs. Since Ø (C25) =1, constraint C25 evaluates to

true, hence, the constraint C25 is violated and the

result is output to the user as shown in figure 4.

Figure.3. Input Inconsistent Update Statement to

the Admit Relation

Figure 4. Rejecting Inconsistent Update

Statement

5. Conclusion

In other constraint distribution model, an update

statement is first carried out and the new database

state is checked for constraint violation. If the

constraint is violated, the update statement is rolled

back. This system differs from others by giving an

algorithm that automatically checks a constraint with

the constraints stored in the meta database. This

approach is much more sophisticated, as the

healthcare system checks for constraint violation

without actually updating the database. The update is

executed only when there are no constraint

violations. Hence, CPA algorithm is efficient as there

are no problems involved with rollbacks as such.

Also, the overhead introduced from this algorithm is

very negligible as the only extra overhead is the time

required for constraint checking on the relation

where update is happening. Constraints are

implemented by a mechanism that detects violations

and then discards the modifications that cause the

violation. The additional time spent on integrity

constraint design will eventually pay off in better

data quality.

References

[1] Praveen Madiraju and Rajshekhar Sunderraman, “

Efficient Constraint Planning Algorithm for

Multidatabses”, Department of Computer Science,Georgia

State University ,Atlanta GA 30302

[2] PRAVEEN MADIRAJU. “Global Semantic Integrity

Constraint Checking for a System of Databases” (2005).

[3] Robert Mach, “Design of Integrity Check and Repair

Algorithms for PosgreSQL Data File”, Czech Technical

University in Prague, Faculty of Electrical Engineering,

January 2008.

[4] Maedeh Sharif Khodaei, “Case Study: Implementation

of Integrity Constraints in Actual Database Systems”,

Czech Technical University in

Prague,Faulty of Electrical Engineering ,Department of

Computer Science and Engineering, 2007/2008.

[5] Hai Zhuge and Yunpeng Xing, “Integrity Theory for

Resource Space Model and Its Application “,

China Knowledge Grid Research Group, Key Lab of

Intelligent Information Processing Institute of Computing

Technology, Chinese Academy of Sciences, 100080,

Beijing, China.

[6]Can Tiirker and Michael Gertz “Semantic Integrity

Support in SQL-99 and Commercial (Object) Relational

Database Management Systems”

 Swiss Federal Institute of Technology (ETH) Ziirich

Institute of Information Systems, ETH Zentrum CH-8092

Ziirich, Switzerland, University of Califonia, Davis,

Department of Computer Science, One Shields Avenue

,Davis, CA 95616, USA.

[7] Andreas Behrend, Rainer Manthey and Birgit Pieper,

“An Amateur's Introduction to Integrity Constraints and

Integrity Checking in SQL”, University of Bonn, Institute

of Computer Science III, Romerstr. 164, D-53117 Bonn,

Germany.

[8] Michael Benedikt and Glenn Bruns, “On Guard:

Producing Run-Time Checks from Integrity Constraints”,

Bell Labs, Lucent Technologies.

